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We propose a weak definition for a resonance trapping in oscillating systems. 
This definition requires the convergence of orbits, in the sense of measures 
convergence, to ah ergodic invariant measure, supported in a small 
neighborhood of the resonance zone. Then we apply this definition to a 
simplified, single-frequency oscillating system which admits a finite number of 
resonance points. It turns out that, under some assumptions, this generalized 
concept of resonance trapping may include the case where all resonances are 
repelling in the classical sense. The analysis is reduced to the investigation of the 
integrability of the logarithmic singularity with respect to an invariant measure 
of a reduced mapping. 
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1. I N T R O D U C T I O N  

In  genera l ,  r e s o n a n t  t r a p p i n g  in an  osc i l l a t ing  n o n l i n e a r  sys tem of  o r d i n a r y  

di f ferent ia l  e q u a t i o n s  is a s soc i a t ed  wi th  the  d i ss ipa t ive  n a t u r e  of  the  system. 

T h e  analys is  is essent ia l ly  loca l  ( r e s o n a n c e  c a p t u r e )  and  is c o n c e n t r a t e d  in 

a n e i g h b o r h o o d  of  a g iven  r e s o n a n c e  (see, e.g., refs. 4 -7) .  

In  this p a p e r  we sugges t  a different  a p p r o a c h  which  is g loba l  in na tu re ,  

and  i n t r o d u c e  a de f in i t ion  for  a r e s o n a n t  t r a p p i n g  in a gene ra l i zed  sense. 

C o n s i d e r  the  m o d e l  sys tem 

= ~g(x, O, s) 

0--~o(x) (1.1~) 
~ = 1  
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where g is smooth, periodic of period 1 in (x, 0, s) and co is 1-periodic in 
x. Thus, we can view (1.1=) as a smooth dynamical system on the torus T 3. 
For convenience we will denote T 3 as ~ | T 2, where the unit circle N is the 
phase space for the slow variable {x} and T 2 is the phase space for the fast 
variables { 0, s }. 

A point x ~ S is called a resonant point of (1.1=) if 3k, l relatively prime 
integers such that (a) kco(x)+ l = 0; and (b) there exists an integer n ~ 0 for 
which (") r is not identically zero, where 

1 1 

fo;o f(k.t)(X) := g(x, O, dO ds 

In this paper we refer to the problem of resonant trapping in a sim- 
plified version of (1.1=) from an ergodic theory point of view. Considering 
(1.1=) as a dynamical system on a compact manifold given by the torus -0 -3, 
it is known (3) that there exists a nonempty, convex set {]~}/c~(7 3) 
[ ~ ( 7  3) is the set of probability Borel measures on -0 -3 ] to which the flow 
induced by (1.1=) is invariant. That is, 

Let q~'=(x, 0, s) be the flow defined by (1.1=): 

~b;(x, 0, s) := (x=(t, s), O~(t, s), s + t) 

where {x=(t, s), O=(t, s)} is the solution of (1.1=) subject to the initial data 
{x=(O, s) -- x, 0=(0, s) = 0}. Then # e {#}~ if and only if VO e C~ 3) 

f-,tkd((q~:)*#)=fv3 (O ~ ~b:) d'u = f v3 Od/~ Vt e It~ (1.2) 

i.e., (qs,)*# = #  Vte R, where (q~',)* is defined by the identity sign in (1.2). 
By the Krein-Milman theorem, the set of extreme points in {/~}) 

is nonempty. These are the ergodic measures, which we denote by 
{#}~e c {#}~. For each # ~ {#}2 we deduce by the Birkhoff ergodic theorem 
that 

lim 1 fo  T - ~  r a{~;(z) )  & = ~ (1.3) 

holds a.s. zEq1-3. Here 6 is the Dirac 6 function and the convergence is 
understood in the weak * sense (C*-topology). The domain of attraction 
associated with # e {P}2 is given by the set z e T 3 for which the limit (1.3) 
holds and is denoted by @(#). The measure # is called a physical measure 
if meas(~(/~))> 0, where meas(-) is the normalized Lebesgue measure on 
y3. Notice that, in general, # is singular with respect to the Lebesgue 
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measure, so we cannot conclude meas(~(/~)) > 0 from the Birkhoff ergodic 
theorem. In general, it is very difficult to prove that a singular ergodic 
measure of a smooth dynamical system is a physical one (unless it is 
supported on an attracting point or a limit cycle). Another definition 
of an invariant measure with a "physical significance" can be found in 
Eckmann. (3), 2 

For each z ~ 51-3, the set {#}~ of asymptotic measures associated with 
z is defined by 

{#}~ = { # ~ ( T 3 ) ;  ~{T~} ~ 00; =limo -~  0 6(cI);(z)) dt 

Obviously, {#}; c {/t}). (But {#}; are not necessarily ergodic measures for 
a given z e  T3.) 

We now extend the definition ~(#)  to N({#}~), where {p}~ is an 
arbitrary subset of the ergodic measures: {/~}~c {#};, 

~({#}g)=__  { z ~ : T 3 ;  {#}~___Conv({#}~)} 

where Conv(. ) means the convex hull. Notice that 

U 9(#) 

where the inclusion above is generally a strict one. 
Let ~ c 5 be the set of resonant points associated with (1.1~). 

Definition 1.1. Given 0 ~< 6 ~ 1 and an open neighborhood 
~  meas(~a)~<6, (1.1=) is said to admit a resonant trapping with 
respect to 6 if there exists a set {#}~ c {/~}~ for which: 

(a) #(~)>~1-6 g#e{#}~.  

(b) meas (~ ({#}~) ) /> l -6 .  

Let (1.1=) admit a resonant trapping with respect to 6. Then a simple 
argument based on the weak * compactness of N'(T 3) yields the existence 
of a closed set K c ~ ( { # } ~ ) ,  m e a s ( K ) j > l - 2 6 ,  and a time T ( K) > 0  for 
which 

! 
-~meas{t; 0~< t~< T, qS;(z) e ~'a} ~> 1 - 2 6  

2A nontrivial example of a physical invariant measure for a smooth dynamical system 
possessing an axiom-A attractor is given by the SRB measure. (21 
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provided T >  T(K) and z ~ K. Thus, a resonant behavior will be observed 
for most of the time and for the majority of the initial data, provided 6 is 
sufficiently small. Our goal is to find conditions on co(-) and g(-, . , -)  so 
that for any 6 > 0, it is possible to find small enough ~ > 0 for which (1.1~) 
admits a resonant trapping with respect to ~. 

In Section 2 we pose some simplifying assumptions on (1.1~), reducing 
the system to a pair of ordinary differential equations on the 2D torus 
-~-2 ~ ~ @ ~]-. In Section 3 we classify the set of resonant points and intro- 
duce our main theorems. Section 4 reduces the problem to the question of 
the integrability of a logarithmic singularity with respect to a certain 
invariant measure v, induced by the return map on a transversal loop in 
T 2. After proving some technical results in Section 5, we complete the proof 
of our main theorems in Section 6. Some technical proofs are given in 
Appendixes A C. 

2. S I M P L I F I C A T I O N  A N D  REDUCTION 

Unfortunately, the problem as stated is beyond the capability of our 
analysis. This is partly due to the fact that the resonant set N is, in general, 
a dense set in g. Thus, we impose a simplifying assumption: 

g = ~(x, kO + It) 

~( . , - )  is 1-periodic in both variables, and ~ ( x ) -  ko) (x )+  l admits a finite 
number of simple roots xl,..., xn: 

d 
~ ( ~ ) = 0 ,  ~ x x Q ( ~ ) r  ~ r  j =  1,...,n 

Therefore, the resonant set .~ = {xl ..... xn} c 5 is a finite set. 
Introducing y = kO + ls, we find that (1.1~) is reduced in 

dx 
dt = ~ ( x ,  y)  

dy 
=~(x) 

dt 

(2.1~) 

Such a reduction enables us to restrict ourselves to the two-dimensional 
tours V 2. The averaged equation corresponding to (2.1~) is given by 

d 
- - f f = e ~ ( 2 )  (2.2) 
dt 
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where 

g(x) =- ~(x, y) dy 

As before, we write T 2 = S | T, where x e 5, y e T. 
There are two generic possibilities for ~: 

(A) g ( x ) # 0  on 5. 

(B) ~(x) = 0 admits a finite number of transversal roots on 5. 

Assume first ~ = ~  [i.e., g2 ( - )=0  has no rots on 5 ] .  Then (2.1=) 
represents a vector field on the torus with no singular points, In case (A) 
it is easy to see that {#}~ converges weakly, as e-~ 0, to a single measure 
given by the normalized density C~-~(x) on T 2. In Case (B), (2.1~) admits 
a finite set of limit cycles in a neighborhood of {s | T, where s are the 
roots of ~(x) = 0. These limit cycles contain the nonwandering set of (2.1~), 
and {#}/consis ts  of measures supported on those limit cycles. 

Assume now 

= ( x l  ..... x . ) # y 5  

Then, considering (2.1~) with e = 0, we obtain circles of fixed points at 
the resonant points {xr |  For e r  those circles break down into a 
finite set of saddle nodes in a O(e 1/2) neighborhood of the resonances. We 
refer to the above neighborhood as the resonance zone, and to the 
invariant measures supported at those critical points as the resonant 
measures {#}~. The object of our analysis is to study ~({~t}~) in 
accordance with the definition of resonant trapping. 

We can immediately omit case (B) above from our analysis. Indeed: 

kemma 2.1. Assume ~ r  and os ( . )=0  admits a finite (nonzero) 
number of transverse roots (s ..... s If R ~ (s ~?k)= QS, then 3 

lim meas(~({#}~))  = 0 
e ~ 0  

In particular, for e small enough, (2.1~) does not admit 6 resonant 
trapping for any fixed 6 > 0 (independent of e). 

The proof  of Lemma 2.1 is given in Appendix 1. 

From now on we assume 

~ ( - ) > 0  on 5 (2.3) 

3Recall that {#}~ is, by Definition 1.1, the set of ergodic measures supported in a 
neighborhood of the resonant set ~. 
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3. CLASSIF ICATION OF RESONANT POINTS 

It is convenient to scale the time by ~1/2, SO that (2.1,) takes the form 

5: = e~/2~,(x, y) 

) = e 1/2~(x) 
(3.1~) 

Let x j e N  and let G(xj, y) be the primitive of -~ (x j ,  .): 

G(xj, y):= ~,(x s, ~) d~ 

Set 

2 _ x - x s  
g 1/2 

Then 

0 0 
= - yy G(xj, y) + ~1/~ ~x ~,(xj, y)~ + 0(~) 

1 1 ~2 tt 2 ~ = ~ ' ( x j ) ~ + 5 ~  J t? (xs);c +o(~)  

(3.2) 

Substituting e = 0 in (3.2), we obtain a second-order equation: 

fi + f2'(xfl ~--f G(xj, y) = 0 (3.3) 

Assuming without loss of generality that f2 ' (xj)>0,  then the minimal 
points of G(xs, .) correspond to nodes, while its maximal points 
corresponds to saddles of (3.3). For simplicity we assume that G(x s, .) 
admits a unique pair of maximum-minimum points on the unit interval. 
Let Yo be the maximal point of G(xj, .). Figure 1 demonstrates the 
homoclinic phase orbit of (3.3). 

Let 

~f(~, y) = �89 2 + 6(xj,  y) 

Then, via (3.2), 

d ~  
dt = el/2[f2'(xfl ~:,(xj, y )2  2 - ~(xj, y) (2'(xf12 2] + O(e) (3.4) 
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Fig. 1. Flow curves of Eq. (2.1~), including resonance, approximated to order ~/2 [consistent 
with Eq. (3.3)]. 

where gx stands for (~?/~?x)~. The increment of ~ along the homoclinic 
orbit of (3.3) is given by integrating the right-hand side of (3.4) along the 
orbit. To leading order [O(el/a)], it is given by gl/2M, where M := M(xj) 
is the Melnikov function associated with the resonance at xj: 

1 
M(xj) =- Y2'(xj) ~ gx(xj, y)[E-- G(xj, y)]  a/2 dy (3.5) 

where E := G(xj, Yo) and the integral is carried along the homoclinic orbit 

{(~, y); ~ ( ~ ,  y)--  G(xj, Yo)} 

represented by the phase-space variables A, y. (cf. ref. 8, Chapter .3). 

D e f i n i t i o n  3.1. A resonant point x j e S  is said to be an attracting 
(repelling) resonance if M(xj) < 0 [M(xj) > 0]. 

The phase flow of a repelling resonance is depicted in Fig. 2. 

Fig. 2. Structure of a repelling resonance. 
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In particular, a resonance is repelling if Sox(Xj,.)> 0 on 7. 

D e f i n i t i o n  3.2. Let { x j } e ~  and let {Yo} be the corresponding 
saddle point (i.e., a local maximum of G(xo, .)). Then the trace of the 
resonance {x~} is defined as the sign of ~x(xj, Yo). 

R e m a r k .  The contribution of ~x(xi, y) near the saddle point y = Yo 
is negligible to the integral (3.5), since [ E - G ( x s ,  y0)]l/2 = 0 by definition. 
Thus, a resonance point {xj} can be both repelling and of negative trace. 

Let c~(e) be the rotation number associated with (2.1~) (see Section 4). 

I . emma  3.1. Assume all points in N are of the same type (either all 
attracting or else all repelling). Assume further that 

P T 

A = J0 f~(2(s)) ds r 0 (3.6) 

where 2(.) is a solution of the averaged equation (2.2) and T is its period 
on 5 [i.e., 2 (T)=  2(0)+ 1 ]. Then for any r e [-0, 1) there exists a sequence 
e, $ 0 such that 

~(e,) = r, n = 1, 2,... (3.7) 

A discussion on the rotation number e(e) associated with (2.1~) and 
the proof of Lemma 3.1 are given in Section 4. 

In Section 5 we proceed and prove some technical results, while in 
Section 6 we present our main results: 

T h e o r e m  3.1. Assume: 

(a) All resonances are repelling. 

(b) All corresponding traces are nonpositive and at most one of 
them is strictly negative. 

Assume further that e is small enough and ~(~) is a number of 
Liouville type (i.e., represented by a continued-fraction expansion where all 
its digits are uniformly bounded). 

Then all ergodic measures of (2.1~) are supported on the critical points 
of the vector field associated with (2.1~). 

Evidently, Theorem 3.1 implies that (2.1~) admits a resonant trapping 
for any 6 > Ce 1/2, where C >  0 is a constant independent of e, provided 
satisfies (3.7). Indeed, the set of critical points of (2.1~) is contained in a el/2 
neighborhood of the resonance, so Theorem 3.1 guarantees that {#}) is 
supported in a 6 neighborhood of the resonant zone. Thus, we may set 
{#}~ = {kt}~- in Definition 1.1. Then, Lemma 3.1 guarantees that resonance 
trapping holds for infinite (in fact, uncountable) value of e > 0. 
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To show that the assumptions of Theorem 3.1 are not completely 
redundant, we introduce: 

T h e o r e m  3.2. Let assumption (a) in Theorem 3.1 hold, and replace 
(b) by: 

(b') All traces are strictly positive. 

Then, for any e for which ~(e) is irrational, there exists an ergodic 
measure/2 e {/~}; not supported on any of the critical points of (2.1=) and 
~(/2) contains all points of T 2, excluding the critical points and their stable 
manifolds. 

Since the set of critical points and their stable manifolds is of small 
Lebesgue measure [O(e 1/2) at most, or 0 if no stable critical point exists on 
T2], it follows, under the assumptions of Theorm 3.2, that (2.1~) does not 
admit a resonant trapping for any ~ > 0 and e satisfying (3.7). 

4. T H E  C IRCLE M A P  

In order to define the circle map associated with (2.1~), we introduce 
the following result. 

k e m m a  4.1. Given Xo ~ N and e small enough, there exists a closed 
loop C = in an ~ neighborhood of {Xo} �9 T, homologous to T, such that the 
flow of (2.1=) traverses C =. 

The proof follows by an application of a Bogoliubov near-identity 
transformation on (2.1~) in a neighborhood of {Xo}| and by our 
standing assumption (2.3). For e small enough we may assume, without 
limiting the generality, 

C = := {Xo, T} 

where Xo ~ N is any point outside the resonance zone for which ~(x0)~ 0. 
We now view (2.1=) as an equation on the covering space S |  N1 (i.e., 

x - x m o d l ,  - o o <  y < o o ) .  For each y~R1 we consider the orbit 
starting at {Xo, y} ~ C '. If the orbit intersects C" at a positive time, we 
define F=(y) as the value of the y coordinate of the orbit at the intersection 
point. The index e will occasionally be omitted. 

L e m m a  4.2. Assume: 

(A) All resonant points of (2.1~) are repelling. 

Then 

p: • l_,  ~1 (4.1) 
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is defined at any yeN1,  excluding a set {y l - . . yn}+7 / ,  where 
{ Y l  'Yn} e [0, 1). The map P is strictly monotone and satisfies 

F ( y +  1) = F(y) + 1 (4.2) 

Moreover, dF/dy is continuous and positive on Rl\{{y~ .. .y,} + 7/}. 

(B) All resonant points of (2.1~) are attracting. 

Then P is defined at any y e n  ~, excluding a set L l w L 2 w  ... w 
L " [0, 1 ) are disjoint closed subintervals. The function L n + 2 ,  where { )'}j=15 

i v satisfies (4.2) and dF/dy is continuous and positive on R lk{U~Lj+Z} .  
Moreover, 

dF div 
lim - - =  lim - -  

y ,L2dy  y~L;dy 

where L f  (L]-) is the right (left) endpoint of Lj. 

Proof of Lemma 4.2. In case (A), the set {y~ -.-y~} c ~- is made up 
of those points for which (x 0. yg) e C ~ belongs to the first intersection of C ~ 
with the stable manifold of one of the saddle points of (2.1~). In case (B), 
the intervals Lj are given by the first intersection of C ~ with the stable 
manifold of the stable nodes of (2.1~) (Fig. 3). 

The existence of iv and the relation (4.2) is obvious, in both cases, by 
the existence and uniqueness theorems for ordinary differential equations. 

Let x = P(x, y, t), y = Q(x, y, t) be the solution of (2.1~) subject to 

P(x, y, O)= x, Q(x, y, O)= y 

If F(y) is defined, let t(y)< ~ be the first time at which the orbit 
intersects C ~. Then, by definition, 

P(xo, y, t(y))=Xo, Q(xo, y, t (y))=F(y)  (4.3) 

Since 

0P x ~7 ( o, Y, t(y)) =g(x0, F(y)) (4.4) 

and ~(Xo, �9 ) > 0 by assumption, the smoothness of t(. ) follows via the first 
equality of (4.3) and the implicit function theorem. Differentiating both 
equalities of (4.3) with respect to y, using (4.4) and its corresponding 
equation for OQ/Ot, we obtain, after some manipulation, 

~P 
- ~(Xo, BY)) l [g(xo, BY))  Qy(xo, y, t(y)) - e l(2(Xo) Py(xo, y, t(y))] 

(4.5) 
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(~) 

Fig. 3. Local structure of the lift P corresponding to (a) repelling resonance; (b) attracting 
resonance. 

Define 

W(t) = -~(P(xo,  y, t), Q(x o, y, t)) Q>,(Xo, y, t) 

1 

+ - (2(P(xo ,  y, t))  Py(xo,  y, t) (4.6)  
8 

and observe that W(O)= -~(Xo, y ) <  O, while 

W(t(y)) = -[~(Xo, F(y)) Qy(xo, y, t ( y ) ) - e  l(2(Xo) Py(xo, y, t(y))] 

Notice that W(.) is the Wronskian of the variational equation (2.1~), 
centered at the orbit (P(.), Q(.)). Hence sign[ W(t(y))] = sign[ W(0)] = 
- 1 and the positiveness of dF/dy follows via (4.5). | 
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Def in i t ion .  A monotone nondecreasing function F: N~ ~ R~ which 
satisfies (4.2) is called a lift of a circle map. 

We now extend the definition of P to ~ .  

(A) Assume all resonances are repelling. Let Ij be the open interval 

Ij = (lira F(y), l imF(y)) (4.7) 
y2"yj yNy} 

where yj E [0, 1 ) is a point of discontinuity of F. We define T" on the whole 
real line by assigning an arbitrary value to P at each yj. Since we want to 
preserve the monotonicity of F, we choose F(yj) s Ij for each discontinuity 
point yjE [0, 1), and extend the definition to R ~ is accordance with (4.2). 

Thus, P is extended to a lift of a circle map and is discontinuous and 
strictly monotone. 

(B) Assume all resonances are attracting. On each interval Lj we 
assign the value F(y), which agrees with P on the endpoints L +" 

F(y) := F(L + ) = F(Lj- ); y e Lj 

(see Fig. 3b). Thus, P is extended to a lift of a circle map and is continuous 
and weakly monotone. 

We define the rotation number c~(P)E R: 

c~(P) = lim ~'tky~ (4.8) 

Here pk stands for the kth iterate of F. 
For P given by a lifting of a circle homeomorphism, the rotation 

number is known to exist and is independent of the choice of y s R1 in (4.8) 
(ref. 1, Theorem on p. 102). Moreover, the rotation number is rational iff 
the associated homeomorphism admits a periodic orbit. In our case, P is 
not a lift of a circle homeomorphism since it either admits discontinuity 
points at {yl,..., y,} + 7/ in the repelling case (A) or is constant on the 
intervals L j+7 /  in the attracting case (B). The following proposition is 
a straightforward generalization of the rotation number theorem to any 
lift F: 

Proposition 4.1. The limit (4.8) exist for any lift of a circle map. 
If P admits a point of discontinuity, then e(P) is independent of the values 
assigned to P at the points of discontinuity, provided the monotonicity of 
P is preserved. The limit (4,8) is rational iff the induced circle map admits 
a periodic orbit for some choice of F(-) at points of discontinuity. 
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D e f i n i t i o n  4.1. The rotation number associated with (2.1~) is 
denoted by 

: =  

By Proposition 4.1, :r is well defined for both the attracting (B) and 
repelling (A) cases. 

Our next step is to study the continuity of ~(.) as a function of e. For 
continuous lifts, the rotation number is continuous with respect to the C O 
topology (ref. 1, Chapter 3.12). Thus, the continuity of ~(.) is obvious in 
the case of attreacting resonance (B). 

In the repelling case, however, F admits discontinuity points, so the 
C O topology is not appropriate. Thus, we have to consider an alternative 
topology. For this purpose we consider the mapping ~- from the set of 
monotone-increasing lifts to the set of monotone-nondecreasing continuous 
lifts, given by 

o~(F)(y) = ~'- 1(y) if y ~R an ge  F 

~(P)(y)  = yj + k if y ~/ j  + k, Vk integer 

where Ij is given in (4.7). 
Notice that g transforms P associated with (2.1~) into P associated 

with the time reversal of (2.1e). Note that time reversal transforms a 
repelling resonance into an attractive one and ~ ( P ) = - ~ ( ~ - ( F ) ) .  Com- 
bining these facts with the remark below Definition4.1, we obtain the 
following result. 

k e m m a  4.3. The rotation number restricted to the set of strictly 
monotone lifts is a continuous function with respect to the topology 
induced by pulling back the C o topology via ~ ( . ) .  

R e m a r k .  The definition of the above topology cannot be extended 
to circle maps which are both discontinuous and admit constant values 
over subintervals. Indeed, for such maps the rotation number is not 
necessarily continuous in any reasonable topology. As an example, let 
0 < Yl < Y2 < 1 and consider the map 

! + y  for y E [0, 1 ] \ (~ , ,  ~2J 

Pa(Y) = + Yl for y E (Yl, .Y2) 

for Y= Y2 

where YE [ / /+  Yl, fl + Y2]. Complete P~ over the reals via (4.2) (cf., Fig. 4). 
It is easy to see that the rotation number ~(F~) admits only rational 

values on the one hand, and is not a constant with respect to fl on the 
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/ 

Fig. 4. Graph of F~(.), restricted to 0 ~< y ~< 1. 

other hand. Thus, c~(F~) is not continuous with respect to the parameter ft. 
Thus, Lemma4.3 cannot be extended to the mixed case where both 
attracting and repelling resonances exist simultaneously. 

C o r o l l a r y  4.1. If all resonant points of (2.1~) are of the same type 
(either all repelling or all attracting), then ct(-) is a continuous function 
of e. 

Next, we consider the behavior of a(e) as e ~ 0: 

Let 4(t) be the solution of the averaged equation (2.2) Lemma 4.4. 
with period T, i.e., 

x = ~ ( x )  

~(t  + T) = X(t) + 1 Vt~[~ 

(2.2') 

Assume 

f:•2(X(s))ds>O ( < 0 )  (4.9) 

Then 

l im~(~)=oo  ( - o o )  (4.10) 
8 ~ 0  
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Definition 4.2. The rotation number associated with the circle 
map induced b y / ~  is 

~2(e) := ~(e) rood 1 (4.11 ) 

With the above definition at hand, we are in a position to prove 
Lemma 3.1 (Section 3): 

Proof of Lemma 3.1. By Corollary 4.1, ~(e) is continuous in both 
the repelling and attracting cases. Then (4.10) and (4.11) yield (3.7). | 

Proof of Lemma 4.4. It is enough to show that for some Yo e [0, 1) 

lim F ~ ( y o ) = ~  ( - ~ )  (4.12) 
e ~ 0  

We use a simplified version of Neistadt's theorem(9): Given 61 >0,  T > 0 ,  
we can find g > 0  so that for some (x0, y ) e C  ~, 

sup tx( t ) -~(t) l  <6~ (4.13) 
O <~ t <~ T/e  

provided e <g. Here s  is the solution of the averaged equation (2.2), 
2(0) = Xo, and x(-) is the solution of (2.1,) subject to x (0)=  x o, y (0 )=  y. 

Let T >  2T. Then 

y(t) = yo + Io O(x(s)) - - d s =  yo+ - - - + 0  

provided t <~ 2T/e. 
Moreover, if t(yo) is the first intersection time of the orbit with C ~ for 

the above chosen Yo, then, by (4.12), lT- t (yo) l  =O(61). Setting F(yo) = 
y(t(yo)), we have 

(P(yo)- yo)-~ If ~(x(s))as =o(~)  

Thus we can choose 6~ so small that 

F(yo) - Yo > ~ O(~(s)) ds 
1 T  

and (4.12) follows. | 

We conclude this section with a technical lemma which describes the 
behavior of P near a discontinues point. 

822/67/I-2-4 
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Fig. 5. Discontinuity points of P corresponding to repelling resonances: (a) positive trace; 
(b) negative trace. 

L e m m a  4.5. Assume Yo e C ~ is a discontinuity point of F, given by 
the first intersection of the stable manifold of a saddle point (2, 3~)e T 2 
with C ~. Assume 22 > 0 > 2~ are the eigenvalues of the Jacobian matrix of 
(2.1~) at the saddle. Then ~ 

lim I Y - F(y0 + 0)l - ().1 + "3~2)/"1"1 d ~(Y) > 0 
y N y o  ay 

(4.14) 

lim my -- F(yo - 0)[ -(;-~ + x2)/x, _~_ p(y)  > 0 
1 

y T' yo ay 

The proof of Lemma 4.5 is analogous to the proof given by Wiggins 
(ref. 10, Chapter 3.2). Figure 5 demonstrates the discontinuity of P in the 
cases of positive and negative trace. 

5. ERGODIC  M E A S U R E S  

We assume throughout this section that all resonant points of (2.1,) 
are repelling. Let c~ (cf. Definition 4.2) be the rotation number of the circle 
map F: 1- --, ~-: 

F(y  mod 1 ) :=  F(y)  mod 1 

where F(yi)~Ii  (mod 1) at the discontinuity points [see (4.7)]. Since F is 
an order-preserving map on the circle, we obtain Lemma 5.1 below as a 
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direct generalization of Denjoy's theory of continuous, invertible circle 
maps (ref. 1, Chapter 3). 

L e m m a  5.1. If ~ is irrational, then F is semiconjugate to the rigid 
rotation, R~(y)=c~+ y mod 1, i.e., 3h: -]-~ 7]-, h is continuous (but not 
necessarily invertible) so that 

R~oh=hoF 

Moreover, the Borel measure 

dv=dh  

is the only probability measure on S which is F invariant. 

Definition 5.1. Let 

t: S - - . ~  

be the return time associated with (2.1~) on the transversal loop C ". 
Namely, 

t(y) := inf inf{s; (x(s), y(s))~ C ~} 
6 > 0  s > 6  

where (x(.), y ( . ) ) i s  the solution of (2.1,) starting at the point {y(0)=  y, 
x(0)  = Xo} ~ C ~. 

Remark. It is easy to see that t(.) admits a logarithmic singularity 
at the discontinuity points of F. 

Assume t(.) is v-integrable and set 

T=-~c ~ t(y) v(dy) < ~ (5.1) 

More generally, let ~b e C~ -2) and define P(~b,-) as a function on C": 

Y) ~t(y) ty) P(~b, =oo (~(Z(s)) ds (5.2) 

where zl.Y ~ is the orbit of (2.1,) starting from y ~  C ~. Obviously, P(~b, y) is 
continuous on C~\{yl ..... y ,  } and admits at most a logarithmic singularity 
at {Yl,..., Y,}. Evidently 

c lt(.)<e(~,.)<ct(.) 
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for some C <  oo; hence, by (5.1) 

- ~  <~ P(~b, y) v(dy)< oo (5.3) 
J C  8 

Define a Borel measure/2 ~ ~ ( T  2) by 

fv2(~d/2=l~cP((~, y) v(dy); V~ (~ C~ -2 ) (5.4) 

The following lemma is the cornerstone of all our main results. 

I . emma  5.2. Assume cT(F) is irrational. 

(a) If t(. ) is v-integrable, then/2 is an ergodic invariant measure of 
(2.1,) and is singular with respect to the invariant measures supported on 
critical points of (2.1~). Moreover, the domain of attraction 9(/7) contains 
all the points in 7]-2 excluding the critical points of (2.1~) and their stable 
manifolds. 

(b) If t(-) is not v-integrable, then all ergodic measures of (2.1,) are 
supported on its critical points. 

The proof of Lemma 5.2 is rather technical and we present it in 
Appendix B, 

Corollary 5.1. If cT(e) is irrational and the saddle points are all of 
positive trace (negative trace), then all ergodic invariant measures are 
supported on the saddle points iff 

where the integral in (5.5) is over C~\{yl...yn}. 
Proof. The singularity of Ilog[(d/dy) F(y)]l near the discontinuity 

points of F is of the same type as that of the return time t(.) (cf. 
Definition 5.1). Indeed, Ilog[(d/dy) F(y)]I  admits a logarithmic singularity 
by Lemma 4.5. Thus, the corollary follows directly from Lemma 5.2. I 

L e m m a  5.3. Suppose e(e) is irrational and the flow (2.1~) admits an 
ergodic measure/2 not supported on any of its critical points. 

Let ~1, 3. 2 be the Liapunov (characteristic) exponents associated with 
/2. Then 

~1 = f~2 = ~c log [ ~  F(y)]dv(y)=O (5.6) 
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Remark .  From Corollary 5.1 it follows that Ilog[(d/dy)F(y)]l is 
v-integrable. 

Proof of Lomma 5.3. We rewrite (2.1+) as 

a'q t 
= Q~(q ) 

where q~: T 2--+ T 2 is the flow map associated with (2.1+). Let J(qt) be the 
Jacobian derivative of q'. Then Vt > 0 

E1 ~- ~2 = fX2 tr(VQ+) d/~ (5.7) 

Assume, without loss of generality, that the flow q' is transverse to C +. 
By the assumption of the lemma and Corollary 5.1, 

T -  [ t(y) dv(y) < 
Jc 

Since tr(VQ~) is a smooth function, we obtain from (5.2) and (5.4) 

_1[  [['(Y) trV .cy),,,,ds] fv2tr(VQ+)d~-Ttjc+LJo ( Q+(q+ dv(y) 

where ,,~) is the orbit of (2.1+) starting at (Xo, y) ~ C +. On the other hand, ~(s) 

fO 
(Y) (y) 

tr(VQ+(q(~) )) ds = log J(q~(Y)) (5.8) 

From (4.5) 

j (qt(y>)  = g(Xo, F(y)) dE (5.9)  
g(xo, y) dy 

Since v is F invariant, (5.7)-(5.9) yield 

d 

To complete the proof of the lemma, we introduce the following result. 

T h e o r e m  5.1. Consider a continuous-time dynamical system and 
let # be an ergodic invariant measure. If all characteristic exponents 
associated with # are different from zero, then # = Op, where p is a fixed 
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point. If one of the characteristic exponents is zero and the rest are all 
positive or all negative, then either # = 6p or # is supported on a limit cycle. 

For the proof of the theorem, see Eckmann (ref. 3, Section IIID) and 
references cited there. 

By the assumption of the lemma, # is not supported on a fixed point 
and since c~(e) is irrational, there exists no limit cycle of (2.1~). Hence 

i 1 = i 2 = 0  (5.11) 

Equation (5.6) now follows from (5.10) and (5.11). | 

6. PROOF OF THE M A I N  T H E O R E M S  

In this section we will first prove Theorem 3.2 and then Theorem 3.1. 
Theorem 3.2 follows from the next result. 

Lamina 6.1. Under the conditions of Theorem 3.2 

fc dF log ~yy dv <~ 0 (6.1) 

Indeed, by Lemmas 4.2 and 4.5, log(dF/dy) is bounded from below 
on 7-. Hence (6.1) yields the >integrability of ]log(dF/dy)]. Then, using 
Lemma 4.5 again, we obtain the integrability of the logarithmic singularity 
at any of the discontinuous points of F. This yields the integrability of t(. ) 
and the result follows by Lemma 5.2. Notice that, usinig Lema 5.3, we 
obtain from (6.1) 

folog~-~dv=O 

In a similar way, Theorem 3.1 is a consequence of the following result. 

k o m m a  6.2. Under the conditions of Theorem 3.1 

dF c 

Jo  log ~yy dv < 0 (6.2) 

Indeed, if there exists an invariant ergodic measure # not supported on 
the singular points of (2.1~), then we obtain a contradiction to Lemma 5.3 
and Theorem 5.1. 

Proof of Lemma 6.1. Assume 

f c l o g  ~y F(y)dv >~ f l>O (6.3) 
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By monotone convergence, there exists 0 > 0 large enough for which 

d F 

Since F is uniquely ergodic and OA[(d/dy)F] e C~ then for each n >I N 
large enough and each y ~ 

log OA F(FJ(y) > n 
j=0  dyy 

But 

log fifty F,,(y) = n~ ~ d log F(FJ(y)) 
j=0  

>- ; ~ i log I OA ff---fi F(FJ ( Y ) ) l >~ ~-- ff 

d --fffy Fn(y) >1 e en/2 Vy e T (6.4) 

However, since F n maps the unit circle into itself 

fc~J-f F~(y) dy<l Vn 3N 

which contradicts (6.4); hence fl = 0. | 

For the proof of Lemma 6.2, we need the following result. 

k e m m a  6.3. Let {y~ . - .y ,}  be the discontinuity points of F. Let 
I~~ -- Ij as defined in (4.7). Set 

I~#)= Fk(I~ ~ 

If the rotation number ~(F) is irrational, then: 

(a) yjr k> Vk>O. 

(b) I~k)c~I~')--=;~3 i fkr  l <~j<~n. 
(c) 3m, 1 ~ m ~ n ,  such that 

and I}~), k/> 0, are connected intervals. 

Vk~O 
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Proof of Lemma 6.3. Suppose n = 1, I} k) := I (k). It is easy to show 
that I (k+ 1) is an open, connected interval provided (i) I (k) is connected and 
(ii) Yl r I(k). 

Suppose y l e I  (~ Then we may assign F ( y l ) = - y l e I  (~ so that F is 
monotone and admits a fixed point at yl .  Since the rotation number of F 
is independent of the choice of F(y~) (Section4), this contradicts the 
irrationality of ~(F). 

Similarly, for k~>0, if y l ~ I  (k), then we may assign a value 
F ( y ~ ) = ~ l e I  (~ such that F ~ ( y l ) = y l ,  which again contradicts the 
irrationality of ~(F). Thus, we proved that I (k) are connected intervals for 
k>~O. 

In order to prove the mutual disjointedness of I (k~, it is enough to 
show that F k admits k distinct points of discontinuity. In fact, 

k 

V\Fk(q]-) = U I(j) 
j=o 

and the result follows by the strict monotonicity of F. The discontinuity 
points of F k are given by 

{Yl}, {F~yl)},--., {F~)}  

F~-y~) is well defined provided F j+l  i(o). (y~ r Obviously, y 1 r  (~ and if 
F-J(yl)  ~ i(o) then 

{ Yl } ff F{~0,) = I (j~ 

which contradicts the first part of the proof. Now assume F(y{)--F -~(y~ for 
j -1  F - t  is a closed orbit of F and we obtain a contradic- j r l. Then F(y~) ..... (y~ 

tion to the irrationality of ~(F). If n > 1, then the same proof works for 
each I 5~, 1 ~j<~n, yielding (a), (b). If for each 1 <~j<~n we can find 
1 ~< l ~ n and k >~ 0 for which { Yt} e IJ k~, then there must be a periodic orbit 
of F for some choice of F(y~) e II ~ i =  1 ..... n. This proves (c). | 

Let the rotation number e be given as a continued-fraction expansion, 
= [al ,  a2,...], aiE N. Let {q.} be the Fibonachi series defined by 

ql = 1, q2 = ~ ! ] ,  q,,+l=an+lq,,+q,~_l (6.5) 
l ~ J  

where [.  ] stands for the integer part. The geometric interpretation of qn is 
as follows: 

Consider the shift mapping t --* t + ~ on the unit circle and let { t n } n~ o 
be the orbit of t o = 0  (tn=~n mode 1). Then 

dist(tq,,O)<dist(tj.O); l<~j<qn 
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Fig. 6. Representation and ordering of the intervals [(k qk- 1) for k = n, n + 1, n + 2, n + 3. Here 
j is a given index for which xj is a discontinuity point of P (corresponding to one of the 
repelling resonance points). Here xj=0. 

where dist(. ) stands for the distance on the unit circle. Moreover ,  if c~ < 1/2, 
then tqn is to the right of 0 if n is odd, and to the left of 0 if n is even. In 
particular, 

O<tq, . z<tqn  i f n i s  odd (6.6) 

tq<tqn+2<O i fn is even (6.7) 

Pick u p j e  {1 ..... n}, and consider I~ q'-l~, n = 0 ,  1, 2 ..... By Lemmas 5.1 and 
6.3, the ordering of I) q~ with respect to the discontinuity point  {yj} is 
the same ordering as the ordering of tqn with respect to {0}. [Not ice  that  
I~ n -  ~ may  be considered as the image F(~j~.] Let X + be the farthest dis- 
tance of I~ q" 1) from {&} and, likewise, let X #  be the least distance of 
I~ q"-l) from {Ys} (see Fig. 6). 

Then, (6.6) and (6.7) together with Lemma 6.3 yield 

I~q"+2-~)c(O,X++2)c(O,X,, ) i fn is odd (6.8) 

I} q"+2 1) c ( - X + + 2 ,  O) c ( - X , - ,  0 ) ifn is even (6.9) 

L e m m a  6.4. Set 

:=q~ log d-;-F dv (6.10) 
:c~ ay 

and 4 

21 + 22 r : = - -  
2~ 

4 Notice that 1 > z > 0 if the saddle's trace is negative. 
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where 2i are the eigenvalues of the corresponding saddle, /~2 > 0 > •1' Let 
Ys be the discontinuity point of F corresponding to either: 

(a) The unique saddle point of negative trace, as in the assumption 
of Theorem 3.1. 

(b) Or, if all traces are zero, let j =  m as in Lemma 6.3(c). 

Then 

meas(i~q,+~ 1~)/> CIX~ [~e ~g-q"+t (6.11) 

where C > 0 is independent of n. 

The proof of Lemma 6.4 is given in Appendix B. 

Proof of Lemma 6.2. We can immediately exclude the case ~ > 0 in 
(6.10). Assume X = 0. If all traces of the saddle points are zero, then z = 0 
and (6.11) yields an explicit estimate for meas(Iq~"-~). In that case we 
obtain a uniform lower bound on meas(I q2~ ~), contradicting their mutual 
disjointedness [Lemma 6.3(b)]. 

We now turn to the case z > 0 (negative trace) and assume, counter- 
positively, J(" = 0. Let y / b e  as in Lemma 6.4(a). Then 

IX++~l ~>meas(I~ q'+~ l~)>cIx:l~>flX++21~ 

Hence 

IX:+ll  < (c' IX+l) v~ 
Thus, for n >> n o 

log IX21< log I X~I+ 1 - ~  - -  l og  C' 

(6.12) 

Fix D > 0 and let no be large enough such that 

IX+l < e  D(C')~/O-~) (6.13) 

Hence 

, log(IX:l),  > ( ! ) n  n0[llog(lX~,) [ + r  1 l l O g C , ] ~ > D ( + ) ,  n0 

Let q/a(Ys) c C ~ be a small neighborhood of y/. Then, applying Lemma 4.5, 

fc~l~ dv:f~,(yj)l~176 dv 

~ < z f  log [Y-Ys[ dr+O(1) (6.14) 
oql a(yj) 
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We now estimate the integral on the right-hand side of (6.14) from above. 
For this sake, we restrict ourselves to the integral on a right neighborhood 
of {yj} defined by 

~ 2  := (yj, x~N+ i) 

where N is sufficiently large so that 2 N +  1 > no and q/~- c q/a(Yj). Then 

~ l o g t y -  yjl dv<<. ~, log(]Xf~+l[)V(X;n+3,X;n+l) 
n = N  

1 
<<.-Dr "~ ~. r2-yy-~v(X~+3,X],+l ) (6.15) 

n = N  

where the right-hand side of (6.15) is an upper Riemann sum for the 
integral on the left. By definition, 

v(X2 + +3, X~-, +1) = dist(tq2,+3, toz~+,) 

= a 2 n + 3  dist(0, t q2 .+2) :=a2 ,+3  ttq2.+2[ 

The second equality above follows since (tq2.+3, tq2.+l) contains exactly 
a2,+3 segments of length ]tq2.+21 , where {ai} is as in (6.5). So the right-hand 
side of (6.15) is estimated by 

log l Y - Y j l  dv<~ - D r  ~~ a2n+3, c (2n+ itq2,+zl (6.16) 
n = N  

On the other hand, 

itqk I < (qk + 2 + l ) 1 

holds Vk~ N. Indeed, the orbit t~,..., tq~+2 o n  the circle admits a maximal 
gap of I tqkl between neighbor points. From (6.5): 

k 
q*~< IF[ (a j+  1)~< Isup(aj+ 1)l k 

j = l  j~IN 

so the sum on the right-hand side of (6.16) diverges provided 

1/r/> sup{aj} + 1 (6.17) 
jEIN 

Since, by definition, 

0 < ' c =  - -  

2gx(xj, yj) ~1/2 + O(e) 
IO(xj) gy(xj, Yj)I 1/2 

(6.18) 
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condition (6.17) is satisfied for a Liouville type number, if e is small 
enough. This concludes the proof of Lemma 6.2. In particular, 2f  = - o e  
[see (6.10)], as we could expect in view of Theorem 5.1. | 

A P P E N D I X  A 

Proof of  Lemma 2. I. Let (Xl'-" Xq) be the unstable critical points of 
(2.2), i.e., 

d 
dxx ~(x~) > 0, i =  1,..., q 

and let q / c  g be a small neighborhood of (21 ..... :~q). Given 6 >0,  we can 
find T > 0  such that for any initial data x(0)e~\~// ,  the corresponding 
orbit will be found at a 6/4 neighborhood of the stable critical points 
ffq+l,--., ffk after t >~ Tie. Now a trivial application of Neistadt's theorem (9) 
yields: There exists ~/(e)>0, lim=~o q(e)= 0, such that the x projection of 
the orbits of (2.1=) is approximated within the 6/4 neighborhood of the 
orbits of (2.2) over a TIe time interval, for all but a set N ~ of initial data 
where meas(N ~) < r/(~). Thus, for (Xo, Yo) ~ N~ u (q/ |  T), we conclude that 
(x(t), y(t)) will be found at a 6 neighborhood of the stable critical points 
of (2.2=), i.e., {2~} @ T, i = q + 1 ..... k, at time t = Tie. It is easy to see that 
if 6 is small enough, any orbit starting from a 6 neighborhood of the 
above set will stay there indefinitely. Hence ~({#} ; ) _  New (q/(9 T). Since 
the Lebesgue measures of q/ and N ~ are arbitrarily small, the lemma is 
proved. | 

A P P E N D I X  B 

Proof of  Lemma 5.2. (a) t(-) is v-integrable. Let X ( T  2) be the set 
of all points in T 2 excluding the critical points of (2.1=) and their stable 
manifolds. Let {#}~ be the set of asymptotic invariant measures due to 
orbits starting at {z} (see Section 1). We need to show the following: 

(1) Existence: fi E {p}~, Vz ~ Y(qI-~), and is singular with respect to all 
invariant measures supported on the critical points of (2.1~). 

(2) Uniqueness: {/*}; is a singleton Vz~ s((T2). 

Proof of  Existence. Let 

: f ( C  =) := ~(1-2) n C ~ 
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By definition, Y ( C  ~) is invariant with respect to F and Vy e X ( C  ~) 

{F~(y)r 1, 2,... } 

where {Yl,..., Yn} are the discontinuity points of F on C ~. 
By Definition 5.1, t(y) < oc if y ~ {y~,..., y,}. Let 

n 1 

T~ 0')= 2 t(F[u)) 
j = O  

By the invariance of 3{(C ~) with respect to F, we conclude 

7",(y) < c~ Vy e aU(C~); n = 1, 2 .... 

Let r e C~ 2) be a test function. Then P ( r  ~-l(dv) by the assumption 
of the lemma [cf. (5.3)]. Using the definition of P(r .) [cf. (5.2)] and the 
Birkhoff ergodic theorem, we obtain 

P(r w) v(dw)= lim " r ds (B.1) 
, ~ n + l  

a.s. y e C ~'. Moreover, since v is uniquely ergodic of the circle map defined 
by F, (B.1) holds for every y e aT(C3). In particular, 

fc P(1, w) v(dw) = 
1 

T =  .~n+llim T(Y) < oO 

holds independently of y e X(C ' ) .  Thus, 

C d f i : = ~  P(r lim(T~Y)) -~ r~""~r (B.2) 
2 e ; ~ o C  , /0 

~'yeaU(C~). This implies that fi is an invariant measure of (2.1~) and 
fi~ {/1};, Vze J{'(C'). We now show that fi is singular with respect to the 
atomic measures supported on the critical points of (2.1,). Indeed, let 
{z~,...,zk} be the set of critical points of (2.1~) and q/a be a 6 neighborhood 
of {zl,...,zk}. Also let Ca be the indicator function on ~-2\o-//a. Obviously 
p(r .) is uniformly bounded on C ' (the bound depends, however, on a), 
and 

lira q~ P(r y) v(dy)=~c P(1, y) v(dy)= T 
g ~ 0 0 C e  e 

Hence, by (5.4), 

lim f i (Tz \~a)=l~f i ({z~})=O,  i=l, . . . ,k  
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Proof of Uniqueness. Let y e oU(C ~) and assume, counterpositively, 
the existence of ki # fi and if', ~ oe for which 

r ds = 2?. 2 r dfi + o(T.) (B.3) 

Let ~/6 be a 6 neighborhood of the critical points of (2.1j,  denoted by 
{Zl,..., zk}. We consider two possibilities: 

(i) There exists a subsequence ftu~ for which 

z (Y ) ( f l ( j ) ) r  Vk -.~- 1, 2,... (*) 

(ii) There exist a subsequence Ttu) and some z~E {zl,...,zk} such that 

z('( f%~) e B~(z~) ~ ~u ~ (**) 

where B ~ is a 6 neighborhood of z~. 
Obviously, by excluding these two possibilities, we obtain a contradic- 

tion to (B.3). 

(i) Let 72(~/ be the first intersection time of an orbit starting from 
z e y2 with Ct  Set 72a as the upper bound 

72(n < "ca; VZ e -[]-2\q/a 

Let 

By (*), 

q(k) = min{ 1 <~ i <<. k; T} y~ > :Fj(k) } 

f~j(k) < T(Y) < Tj(k) + 726 --q(k) 

Thus we get from (B.3) 

~(y) 

f ~q(k) (y) T(Y) fv (Y) r ds = -q(k~ r dfi + o(Tq(k~ + 0(729 
~0 2 

But, from the existence proof, 

I ( T ~ Y }  fv  (y) - -  lim ~ o  r  20dfi n ~ c2~ 

Since fi # / i  by assumption, (B.5) and (B.6) contradict (B.3). 

(ii) Let (ii) Let 
72 (i,a~ {inf t ;z(s)q~B6(zi) ,z(O):=zeB~(zi)  } (z) : 

(B.4) 

(B.5) 

(B.6) 
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Then 

.4- z ( i , ~ )  < T ( Y )  . i  ~ " Z '~ 

where q(k)  is defined as in (B.5) (this time with respect to ~(k)). Let zk(-) 
be the solution of (2.1~) starting at z~(0) := z(Y)(Tt(k) ). Recall from (**) that 
z(Y)(Tt(~)) ~B~(z~). Utilizing (B.7), we obtain 

4(z(~)) as = Jo ~(~IL)) as + Jo ~"~(~(~)) d~ + o(~ ~) (a.8) 

The second term on the right of (B.8) is approximated by 

~(o){4(~) + 0(6)} 

SO 

f'q(k) (y)  ~ f~_ i,c~ b(z(~)) ds r,(k) ~(z)/2(dz) O(~)} 
v 0 2 

+ O(Tl(k)) + O(~ ~) (B.9) 

Passing to a subsequence, we can assume 

T---~y~ -- fl , 0~<fl~<l (B.101) 
- -q (k )  

From (B.7) we obtain, for the same subsequence, 

7~ zk(O ) 
lim u  1 - f l  (B.102) 

k ~ o~ - -q (k )  

Substituting (B.101) and (B.102) in (B.9), we get 

f ~q(k) _ ( y )  T ( Y )  ~(~(~) ds = p ~(z)/2(dz) + (1 - ~) ~(z~) ~ q ( k )  
~o 2 

+ (y) 0(~  ~) + (y) O(STq(k) ) + O(Tq(k) ) (B.11 ) 

Since 6 os arbitrarily small, (B.5) and (B.11) yield 

/2 : /~/2 "Jr- ( 1  - - ] ~ )  6 ( Z i )  

But fi is nonatomic at any of the critical points. Hence fl = 1 and/2 =/2. 

(b) t(-) is not v-integrable. In this case 

lim T('y) = aD Vy ~ JU(C ~) 
n ~ 3  1"/ 
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If r is a test function on T 2, supported outside the neighborhood of the 
singular points of (2.1~), then evidently 

fc P(r y) v( dy) < oo 
z 

Hence, if y E X(C~), 

lira (y) n P(r y) v(dy) = 0 r ds = lira ~ c~ 

Therefore, all limit measures in {#}~, z e ~ ( C ~ ) ,  are supported on the 
critical points of (2.1~). | 

A P P E N D I X  C 

Proof of Lemma 6.4. The proof is based on an extension of the well- 
known Denjoy inequality, which we quote below. 

Let p/q be a rational approximation of e, satisfying 

_p <q-~l (c,1) 

Then, for every r E BV(~), 

where F(.)  stands for a circle map with the rotation number ~. 
For the proof of (C.2) see, e.g., ref. 1, Chapter 3.11. Here we consider 

the case where r is of bounded variation on 7I-\U~(0), where U~(0) is a 
small neighborhood of {0}. Assume 

lim r - ~  
y ~ O  

r < 0 and monotone on the right and left neighborhoods of 0 in Ua(0), 
respectively. We claim: 

Let Zoe~-, and q as in (C.1). Let O<<.k, l<~q-1 be such that 
ZR := FX(Zo) is the closest point to {0} on the orbit Zo,...,F q- l(z0) from the 
right, and similarly ZL:=F~(zo) is the closest point to {0} on the same 
orbit from the left. Let J =  (ZL, ZR)= {0}. Then 

q - - 1  

r ) >~ q ~v 0 dv-Var ( r  (C.3) 
j ~ 0 1 ~ l \ j  



Resonance Trapping: An Ergodic Approach 63 

The proof of (C.3) follows directly from the proof of Denjoy's lemma, and 
we skip it. Choosing q large enough, so j__c U6{0}, we have 

Var(~b) ~> Var (q~)- [~b(zR) +~b(zL) ] 
VI\J Vf\U6{O} 

[Notice that ~b(zR)+ (J(ZL)<0.] SO, under the same conditions, 

q--I  

(b(FY(zo) ) >~ q fv 
j = 0  1 

dv - Var (~b) + ~b(zR) + (~(ZL) (C.4) 
T~\u~(o) 

Now, consider the conditions of Theorem 3.1. Let {yj}= {0} be the 
discontinuity point of F corresponding to the unique saddle point of (2.1,) 
which is of negative trace. From Lemma 4.5 we see that log((d/dy)F) can 
be substituted for ~b in the local neighborhood U6{0}. 

Let Zo e I~ ~ and q = q,. Assuming n is odd, then z R = F~0~ 1 and zL = 
F~;0~l 1. Using (C.4), we get 

log F~20))= ~ log FJ(zo 
j~O 

Thus 

d d q~ d 
loggy [Fqn-l(Zo)]=log[-~yF (Zo) l - log  [~y F(ZR) ] 

>~q,,Jt+l~ [J-f F(zL)l-vVavfo) (l~ ff---f F ) 

d Fq_~(Zo)~_ 1 d -~y ~y F(z L )e q'* (C.5) 

where C =  C(6) is independent of n. The inequality (C.5) holds Vz o e l )  ~ 
provided ZL is the leftmost point in F q"-~- l(i)0)):= i],_~-1. Therefore, we 
may choose z L = -X~-_ 1, obtaining 

i n f g  F q ' -  d q,x_ ~o) dy 1 >t C_~yF(_X-_I)e >~ CIX~_II(~'~+~2)/~e q'~ (C.6) 

822/67/1-2-5 
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where we applied Lemma 4.5. Using 

d ~ meas[I~q~ t)]>~I)O)inf__Fq 1 
,)ol dy 

we complete the proof of (6.11). 
If case (b) of Lemma 6.4 holds, then 

inf (~y Fq") > C  

independently of n, and (6.11) follows with )q + )~2 =0. 
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